Angelo Mazza

Professore associato di DEMOGRAFIA [SECS-S/04]
Ufficio: Stanza 27 piano IV
Email: a.mazza@unict.it
Sito web: www.datasciencegroup.unict.it/content/angelo-mazza
Orario di ricevimento: Mercoledì dalle 11:00 alle 12:00 Inviare una email per richiedere un appuntamento.
Temi di ricerca: Population Studies, Spatial Demography, Migrations, Mortality.



Education
Ph.D., University of Catania, 2000
Laurea cum laude;in Economics and Business, 1997.


Research Interests
My research has focused on the use of (computationally intensive) statistical methods for analyzing human populations. Main research topics embrace segregation, migrations, and mortality. Other research interests are in item response theory, and in its application to the study of human social behaviour.
My most recent interests are in spatial demography and the use of GIS and spatial analysis to study population.


Recent publications (since 2011)

2019

  • Mazza A, Punzo A. Modeling Household Income with Contaminated Unimodal Distributions. In A. Petrucci, F Racioppi, R Verde, New Statistical Developments in Data Science, forthcoming, Switzerland: Springer International Publishing.
  • Mazza A, Battisti M, Ingrassia S, Punzo A. Modeling return to education in heterogeneous populations. An application to Italy. In Greselin I, Deldossi L, Vichi M (Eds.), Advances in Statistical Models for Data Analysis, Studies in Classification, Data Analysis, and Knowledge Organization, forthcoming, Switzerland: Springer International Publishing.

2018

  • Punzo A, Mazza A, Maruotti. A Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions. Journal of Applied Statistics, (forthcoming). Impact factor 0.664
  • Mazza A, Strozza S. SICILIA, MORDI E FUGGI. Uno sguardo da una delle porte di accesso all’Europa: immigrazione, accoglienza e relazioni sociali in Sicilia e a Catania. Limes. Rivista Italiana di Geopolitica, 01/2018, p.175-182.
  • Mazza A, Punzo A, Ingrassia S. flexCWM: A Flexible Framework for Cluster-Weighted Models. Journal of Statistical Software, Vol.86 (2) p. 1-30. Impact factor 22.7
  • Punzo A, Mazza A, McNicholas P D. ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions. Journal of Statistical Software, vol.85 (10), p.1-25; Impact factor 22.7

2017

2016

2015

2014

  • Altavilla AM, Mazza A, Punzo A. A comparison of bias correction methods for the dissimilarity index. RIEDS, vol. LXVIII, p. 159-166
  • Altavilla AM, Mazza A, Punzo A. An R snippet for adaptive beta kernel graduation. An application to Italian mortality data. RIEDS, vol. LXVIII, p. 7-14
  • Mazza A, Punzo A. DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques.Journal of Statistical Software, vol. 57, p. 1-18. Impact factor 22.7
  • Altavilla AM, Mazza A, Monaco;L .;Effetti;dell’invecchiamento;della;popolazione;sulla;spesa;del;sistema;sanitario;nazionale. RIEDS, vol. XLVIII, p. 1-9
  • Mazza A, Punzo A, McGuire;B .;KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory.Journal of Statistical Software, vol. 58, p.;1-34 .;Impact factor 22.7
  • Johnson J, Mazza;A .;Using Social Network Analysis to measure and enhance integration among non-profit organizations. In Catalfo P, Experiences in monitoring social networks of non-profit organizations. p. 19-37, Roma: Aracne Editrice

2013

  • Altavilla AM, Mazza A, Monaco;L .;Incidenza;della;dinamica;demografica;sul;mercato;del;lavoro. RIEDS, vol. LXVII, p. 7-14
  • Mazza A, Punzo A. Graduation;by;Adaptive Discrete Beta Kernels. In: Giusti A, Ritter G, Vichi M, Classification;and;Data Mining. Studies in classification, data analysis, and knowledge organization, p. 243-250, Berlin:Springer-Verlag
  • Mazza A, Punzo A. Using the Variation Coefficient for Adaptive Discrete Beta Kernel Graduation. In Giudici P, Ingrassia S, Vichi M, Statistical Models for Data Analysis. Studies in classification, data analysis, and knowledge organization,;p. 225-232, Springer International Publishing Switzerland

2012

  • Altavilla AM, Mazza A, Punzo A. Beta kernel graduation of mortality data in R. An application to the Enna province. RIEDS, vol. LXVI, p. 15-22
  • Altavilla AM, Galizia F, Mazza A.;Indicatori;di;carico;demografico;ed;invecchiamento;della;popolazione. RIEDS, vol. LXVI – N. 1, p. 7-14
  • Di Liberto E, Mazza A, Mercatanti L. Le;recenti;strategie;insediative;della;comunità;rumena;in Sicilia. Geotema, vol. 43-44-45, p. 149-155
  • Altavilla AM, Galizia F, Mazza A. L’invecchiamento;della;popolazione;nei;paesi;del;bacino;del Mediterraneo. RIEDS, vol. LXVI, p. 7-14
  • Altavilla AM, Mazza A. On the analysis of immigrant settlement patterns using quadrat counts. The case of the city of Catania (Italy). Advances and Applications in Statistics, vol. 29, p. 111-123
  • Altavilla AM, Mazza A, Punzo A. On the upward bias of the dissimilarity index. RIEDS, vol. LXVI – N. 1, p. 15-20
  • Altavilla AM, Mazza A, Mercatanti L. Two solitudes:;Singalesi;e Tamil;tra;Catania e Palermo. Geotema, vol. 43-44-45, p. 52-57

2011

  • Altavilla AM, Mazza A, Punzo A. Alternative variants of the Heligman-Pollard model. RIEDS, vol. LXV, p. 5-12
  • Altavilla AM, Galizia F, Mazza A, Scrofani L. Catania e Palermo, dal decentramento alla ricentralizzazione: il riposizionamento della popolazione agiata in ambito urbano. In: Ruggiero V, Scrofani L, Turismo e competitività urbana. Milano: Franco Angeli.
  • Mazza A, Punzo A. Discrete Beta Kernel Graduation of Age-Specific Demographic Indicators. In: Ingrassia S, Rocci R, Vichi M. New Perspectives in Statistical Modeling and Data Analysis. Studies in classification, data analysis, and knowledge organization, p. 127-134, Berlin: Springer-Verlag
  • Mazza A, Punzo A. Using the Variation Coefficient for Adaptive Discrete Beta Kernel Graduation. In: Cerchiello P, Tarantola C, CLADAG 2011 Book of Abstracts

Published R software packages


visualizza le pubblicazioni
N.B. l'elevato numero di pubblicazioni può incidere sul tempo di caricamento della pagina
Anno accademico  

03/10/2019
Informazioni 2019-20

- Il course-id 2019/20 per MyMathLab  è XL01-518Z-3021-29R4

- Informazioni sulle modalità d'esame di Statistica 2018/19 

Il materiale didattico per Statistica Corso A è disponibile sulla piattaforma  STUDIUM.UniCT

Informazioni su Sistemi di Elaborazione delle Informazioni

LEGGI TUTTO